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Plan

1. An introduction to the phase diagram of QCD and modern methods for
computing at finite chemical potential

2. The technique of analytic continuation of the free energy by the method of
Taylor expansion around vanishing chemical potential

3. Estimating the critical end point of QCD and the wing critical line in the QCD
phase diagram

4. The physical degrees of freedom in the plasma phase of QCD: the evidence
from linkage and screening correlators.
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Global symmetries determine the phase diagram

Two flavours of light quarks: approximate SU(2)× SU(2) chiral symmetry, in the
limit broken spontaneously to diagonal SU(2), (pseudo) Goldstone bosons are the
(light pseudo-scalar) pions.

Five tunable parameters: T (temperature), µu and µd (two chemical potentials),
mu and md (two masses). Gibbs phase rule allows large order multi-critical points.

Order parameter for chiral symmetry restoration: 〈ψψ〉, tuned by changing T and
µ = (µu + µd)/2, excitations in this “radial” direction are heavy scalar mesons.

Order parameter for pion condensation: 〈ψγ5τ2ψ〉, non-zero value may be induced
by tuning isospin chemical potential µ3 = (µu− µd)/2, excitations in this direction
give a massless charged pion.
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The phase diagram
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Section of the 5-d phase diagram along a surface of µ3 = 0 and mu = md: phases
distinguished by 〈ψψ〉. Other interestingly ordered phases at larger µ.
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The sign problem

Z = e−F (T,µ)/T =
∫
DU e−S

∏
f

detM(U,mf , µf)

where the Dirac operator is a lattice discretisation of M = m+ ∂µγµ.

• If there is a Q such that M† = Q†MQ, then clearly detM is real.

• Q = γ5 for µ = 0. Nothing for µ 6= 0. Monte Carlo simulations of Z fail.

• Thermodynamics remains valid, free energy is fine.
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Developing methods to work with the sign problem

• Reweighting: Simulate at some parameter set, reweight the Fermion
determinant (M , inside the path integral) to another parameter set. Fodor and
Katz (hep-lat/0104001) used density of states method, Bielefeld-Swansea
(hep-lat/0204010) used Taylor expansion of determinant.

• Analytic continuation: Find F and derivatives at some parameter set, make
analytical continuation of F (outside the path integral) to another parameter
set.
– Imaginary chemical potential: exp(iµ) like a U(1) gauge field, no sign

problem. de Forcrand and Philipsen (hep-lat/0205016), d’Elia and Lombardo
(hep-lat/0209146) used regular imaginary µ, Azcoiti et al (hep-lat/0409157)
extended to two couplings.

– Taylor Expansion of free energy: Gavai and SG (hep-lat/030301),
Bielefeld-Swansea (hep-lat/0305007)
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The Taylor expansion of the pressure for 2 flavours

P (T, µu, µd) =
(
T

V

)
logZ(T, µu, µd)

P (T, µu, µd) = P (T, 0, 0) +
∑

nu,nd

χnu,nd

µnu
u

nu!
µ

nd
d

nd!

mu = md implies that χnu,nd
= χnd,nu,

for any µu = µd. One QNS is

χB(T, µB) =
∂2P (T, µu, µd)

∂µ2
B

∣∣∣∣
µu=µd=µB/3

χB(TE, µE
B) diverges in the infinite

volume limit: pseudo critical behaviour
at finite volumes. van Hove’s theorem /T

T

µ

V2

V1
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Differential calculus by machine: 1

There are mechanical and (almost) fully programmable methods to take the
derivatives involved in a high-order Taylor series expansion of the partition
function with fermions and finding the most efficient way of programming the
Taylor coefficients.

Step 1

Relate the derivatives of logZ to the derivatives of Z. Trivially accomplished by,
e.g., the simple Mathematica program

chi[n , m ] := D[ Log[Z[u, d]], {u, n}, {d, m}],

or its generalization to a larger number of flavours. Notation used is

χnm = χ uu···︸︷︷︸
n times

dd···︸︷︷︸
m times
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Differential calculus by machine: 2

Step 2

Relate the derivatives of Z to fermion traces. As long as we work with equal mass
flavours, the fermion traces are flavour independent. Introduce the notation

Z10 = Z〈O1〉, O′
n = On+1.

Use the rule [detM ]′ = [expTr logM ]′ = TrM ′M−1 detM , to write

Z10 = Z01 =
∂Z

∂µf
=

∫
DUe−S TrM−1

f M ′
f .

Note: M ′ = γ0 and M−1 = ψψ, so TrM−1M ′ = ψ†ψ.
S. Gottlieb et al., Phys. Rev. Lett., 59 (1987) 2247
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Differential calculus by machine: 3

Step 3

Use the chain rule to write down higher order derivatives in terms of the On and
their products. A diagrammatic representation of these quantities is possible, and
can be used to check the results. SG, Zakopane lectures, 2002

1 2 11

111 21 3

Example: Z60 contains O1122 with coefficient equal to the number of ways of
partitioning 6 objects into groups of 2 ones and 2 twos, i.e.,{

1
2

(
6
1

) (
5
1

)}
×

{
1
2

(
4
2

)}
= 45.
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Differential calculus by machine: 4

Step 4

The diagrams still have to be related to fermion traces. In the continuum this is
trivial because only M ′ = γ0 6= 0. On the lattice there are several more steps,
since arbitrary derivatives, M (p), exist. Introduce further notation

bn1 · p1 ⊕ n2 · p2 ⊕ · · · e = Tr
[(
M−1M (p1)

)n1
(
M−1M (p2)

)n2

· · ·
]
.

Then derivatives are given by the rule—

bn · pe′ = −nb1⊕ n · pe+ nb(n− 1) · p⊕ (p+ 1)e.

The chain rule is equivalent to making the derivative linear over ⊕.

Example: b1e = TrM−1M ′, and b1e′ = −b2 · 1e+ b2e.
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Differential calculus by machine: 5

Step 5

Numerical estimates of traces are made by the usual noisy method, which involves
the identity I = |r〉 〈r|, where r is a vector of complex Gaussian random numbers.
We need upto 500 vectors in the averaging.
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Central value: measurement with exactly Nv vectors; bars: config-to-config
variation. Statistics of vectors (Nv) is the big issue. Statistics of configs secondary.
Bielefeld: Nv = 50–100, Mumbai: Nv = 400–500.
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Differential calculus by machine: 5

Step 5: why so many vectors?

Distribution of each trace is Gaussian. Product of traces such as χ2222 strongly
non-Gaussian. Proof: For a Gaussian random number of unit variance

〈x2
i 〉 = 1, 〈x4

i 〉 = 3 implies
[
x4

i

]
≡ 〈x4

i 〉 − 3〈x2
i 〉2 = 0,

but for a product of independent Gaussian numbers v = x1x2 · · ·xn,

〈v2〉 = 1, 〈v4〉 = 3n implies
[
v4

]
= 3n − 3.

The distribution of v can be written down in closed form in special cases.

Central limit theorem applies: distribution of v is Gaussian (proof straightforward).
But to reduce the 4th cumulant to substantially below the 2nd, one needs
statistics � 3n. So, the number of vectors Nv � O(n3n).
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Differential calculus by machine: 6

Step 6

Optimisation of the computation of multiple traces reduces to an NP-complete
problem in computer science called the Steiner problem. Need 20 matrix
inversions to perform a single measurement of upto 8th order susceptibilities.
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Note the accuracy checks built into the optimal computation.
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Fluctuations
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4th order NLS peaks at Tc
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Peak due to multiloop operators: correspond to products of traces.

Proper control of (T/V )〈O22〉 is needed to obtain the correct value of χ40 (and
χ22) near Tc. Similiar control of products of traces needed for all higher
susceptibilities in this region.

Proper choice of Nv crucial.
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Quark mass dependence

Radius of convergence: µ∗/T =
√
|12χ(2)

B /χ
(4)
B |.

Peak in χ40 implies decreasing radius of convergence. The radius of convergence
seems to be very sensitive to quark mass in a region near Tc. Interpolation to
mπ/mρ = 0.7 is consistent with the break point in Bielefeld-Swansea result.
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Partially quenched computation. Sea quarks correspond to the lowest mass shown here.
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The wing critical line
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How curved is the wing critical line? Data from different simulations can be
combined to answer this question since they are at similiar values of mp/mρ but
different mπ/mρ. Criticality may be harder to observe at larger mπ/mρ, but
simulations are easier.
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Theorems on series analysis

Fundamental theorem If the series expansion of an analytic function in one
complex variable has a radius of convergence ρ, then there is at least one singular
point on the circle of radius ρ centered on the point at which the expansion is
constructed.

Singular point is one where the function is not analytic (although it may have a
value at that point).

Example 1: the series for pressure can have a finite radius of convergence. The
value of pressure at the singular point is well defined, although its derivatives do
not exist.

Example 2: the series for the susceptibility may have a finite radius of
convergence. Usually, even the value of this function does not exist at a singular
point on the circle at the boundary of convergence.
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Where is the singular point?

If all the coefficients of the series are positive then the singular point lies on the
positive real axis.

If there is a pattern to the number of negative coefficients separating successive
positive coefficients, then one can deduce the phase angle of the singular point.

Example 1: alternating series; singularity on negative real axis.

Example 2: The series expansion of

1
1 + exp(iθ)z

+
1

1 + exp(−iθ)z
= 2 + 2 cos θz + 2 cos 2θz + 2 cos 3θz3 + · · · ,

has sign changes dictated by the value of θ.
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Radius of convergence and divergence of series

Take a partial sum of the series—

fn(x) =
n∑

i=0

fix
i,

such that it has a radius of convergence ρ. This sum need not diverge at the
radius of convergence. The only signal of the divergence is that partial sums for
different n differ increasingly more for |x| > ρ.

Example 1: The series
∑
xi/i diverges at x = 1, but all partial sums are perfectly

well behaved across x = 1—

1 + x, 1 + x+ x2/2, 1 + x+ x2/2 + x3/3, · · ·
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Radius of convergence and divergence of series

Example 2: The series for the magnetic susceptibility of the two dimensional Ising
model in y = exp(−2βH) around y = 0 has unit radius of convergence but the
partial sums are perfectly smooth and well behaved. The exact ratio m/χ = 0 in
the ordered phase, but the partial sums are perfectly smooth across y = 1.
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Radius of convergence and divergence of series

Example 3: In QCD, the partial sums of the series for χ20 are perfectly smooth.
The ratio nB/χB is also perfectly smooth and non-zero at the radius of
convergence. Allton et al., Phys. Rev. D 71 (2005) 054508
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Series coefficients in QCD
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Between T = 0.95Tc and T = 0.9Tc the singularity moves off the real µ axis.
Hence the critical end point is bracketed between these two temperatures. We
have quoted TE ' 0.95Tc.
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Radius of convergence

Notation: If f(x) =
∑

n f2nx
2n then ρ2n =

∣∣∣ f0
f2n

∣∣∣1/2n

and r2n+1 =
√∣∣∣ f2n
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Old Budapest results roughly consistent with our small volume analysis. A
threshold Lmπ ≈ 5 is needed to study the thermodynamic limit.
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The QCD critical end point
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Strong finite volume effect; strong quark mass effect. When Lmπ →∞,
a = 1/4T and mπ/mρ = 0.3 then TE/mρ ≈ 0.17 and µE/mρ ≈ 0.19.
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What to control in a reliable computation

1. Statistics of random vectors: Nv ' 400–700 required. One test: off-diagonal
higher order susceptibilities must be independent of lattice volume.

2. Statistics of configurations: secondary problem. All configurations should be
statistically independent, otherwise systematic effects. Measure autocorrelation
times (τ). Statistical errors: σ2

actual = (1 + 2τ)σ2
apparent.

3. Spatial volume: must be large enough to contain more than 5 Compton
wavelengths of the pion. Even larger if one wants to study critical indices.

4. Quark mass is crucial. State of the art is a quark mass such that mπ/mρ is
50% larger than the physical value.

5. Lattice spacing errors currently undetermined. Require two computations at the
same mπ/mρ with two actions having different lattice spacing effects.
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Summary of phase diagram

1. Sign problem under reasonable control in QCD for T/mρ > 0.13.

2. Taylor expansion can be used to explore the phase diagram upto the nearest
singularity to the µ = 0 starting point.

3. Extrapolation to infinite volume has pitfalls: careful. Need Nv large, control
over τ and Lmπ ≥ 5.

4. With a = 1/4T and mπ/mρ = 0.3 one finds TE/mρ ≈ 0.17 and
µE/mρ ≈ 0.20.

5. Strong dependence on quark mass, i.e., mπ/mρ.
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Quasiparticles: linkage of quantum numbers

Identify a particle by a complete set of quantum numbers. When there are many
conserved quantum numbers the problem is simple. Look at two quantum
numbers simultaneously— say U and D.

T = 0: whenever U = 1 is excited D = −1 is excited along with it.

T > Tc: when U = 1 is excited D = ±1 should be excited along with it if the
medium contains quarks. Otherwise, by observing what value of D is preferentially
excited, you find something about the quantum numbers of the excitations.

Similarly one could study the linkages U |B or U |Q, or D|B etc.

C(XY )/Y ≡ 〈XY 〉 − 〈X〉〈Y 〉
〈Y 2〉 − 〈Y 〉2

=
χXY

χY
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Linkage is robust
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Above Tc ratios of QNS are almost independent of lattice spacing, and insensitive
to quark masses (as long as m < T ). Therefore linkage is a robust quantity above
Tc.
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U and D are not linked
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u and d can be carried by the same particle below Tc but not above Tc.
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Strangeness is carried by quarks
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Screening correlators with overlap quarks
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Ns = 4/T ; a = 1/6T and a = 1/8T ; overlap. Fit to Bose gas good only over
limited range of z, so screening masses not quoted. Vector correlator close to ideal
gas of quarks.

Pseudoscalar correlator badly described by ideal quark gas at long distances and
by Bose gas at short distances. Does not seem to be a finite lattice spacing
artifact. Gavai, SG, Lacaze
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Screening correlators in momentum space
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Vector screening correlator roughly compatible with ideal quark gas upto overall
normalization. χ2/DOF ≈ 3, implying shape change is a small effect but definite.
Try weak coupling expansion?

Pseudoscalar is definitely different at small momentum, but agrees at large
momentum.
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Lattice spacing effects in momentum space correlators
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Lattice spacing effects? Some generic dependence, but
nothing in Cπ(0)/Cρ(0).
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Summary of 2nd part

1. Immediately above the crossover, quark-like quasi-particles can be observed in
the QCD plasma. Linkage is usually visible in experiments— called particle id,
when single particles can be tagged in detector. In plasma need to use linkage
as defined.

2. Screening masses with overlap quarks give extra indications about the nature of
the excitations.
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